
Christopher B. Seaman
Washington and Lee University School of Law, seamanc@wlu.edu

Follow this and additional works at: https://scholarlycommons.law.wlu.edu/wlufac

Part of the Law Commons

Recommended Citation
AMERICAN INNOVATION AND THE LIMITS OF PATENT LAW:
A RESPONSE TO WILLIAM HUBBARD, COMPETITIVE PATENT LAW

Christopher B. Seaman*

Although it has recently come under fire from both theoretical\(^1\) and empirical\(^2\) perspectives, the promotion of innovation remains the predominant justification for U.S. patent law.\(^3\) In *Competitive Patent Law*,\(^4\) Professor William Hubbard makes a valuable contribution regarding an underexplored aspect of patent law’s ability to encourage innovation—namely, “whether U.S. patent law can be tailored to provide U.S. innovators with enhanced incentives to invent” compared to foreign rivals,\(^5\) and thus by extension make American firms more competitive in the global marketplace.\(^6\)

Although Professor Hubbard is generally pessimistic regarding patent law’s capacity to directly incentivize U.S. innovators relative to their foreign counterparts,\(^7\) he sees more opportunity in its ability to promote a pro-innovation culture that can indirectly enhance American competitiveness.\(^8\)

This response addresses three aspects of Professor Hubbard’s thoughtful and well-written article. First, it will critically assess the contention advanced by some commentators—and apparently shared by the article—that the United States is currently facing an “innovation gap.”\(^9\)

* Assistant Professor, Washington and Lee University School of Law.

\(^1\) See generally ROBERT P. MERGES, JUSTIFYING INTELLECTUAL PROPERTY (2011).

\(^3\) See U.S. CONST. art. I, § 8, cl. 8 (providing that Congress has the power “[t]o promote the Progress . . . useful Arts, by securing for limited Times to . . . Inventors the exclusive Right to their . . . Discoveries”); Graham v. John Deere Co. of Kansas City, 383 U.S. 1, 9 (1966) (favorably citing the Jeffersonian view that “[t]he patent monopoly . . . was a reward, an inducement, to bring forth new knowledge”); 1 R. CARL MOY, MOY’S WALKER ON PATENTS § 1:12 (4th ed. 2013) (explaining that the patent “system is a useful means for the State to encourage invention”).

\(^5\) Id. at 341.

\(^6\) Id. at 347–48.

\(^7\) See id. at 363–79, 392 (“[A]djusting U.S. patent law has little capacity to promote domestic competitive advantage by increase American inventors’ incentives to invent vis-à-vis the incentives felt by foreign inventors.”).

\(^8\) See id. at 386–91.

\(^9\) Id. at 355.
Second, it will evaluate the claim that patent law can play a meaningful role in enhancing American innovation and competitiveness. Finally, it will briefly discuss several non-patent-law approaches that can help foster the “innovation culture” advocated by Professor Hubbard.

Presently, the United States is the global leader in innovation. The U.S. expended over $400 billion in research and development in 2011. This figure is more than double that of its closest competitor, China, and more than triple Japan’s. In addition, American intellectual property is highly valuable. According to data from the International Monetary Fund (IMF), the United States was the leading major economy in compensation received from foreign licensing of its intellectual property in 2012, earning more than double that of its closest competitor, Japan.

11 In 2011, China’s R&D expenditures were 1.84% of its GDP, see Data: Indicators: Research and Development Expenditure (% of GDP), supra note 10, which is equivalent to approximately $205 billion. See Data: Indicators: GDP, PPP (Current International $), supra note 10 (stating that China’s GDP for 2011 was approximately $11.185 trillion).

12 In 2010, Japan’s R&D expenditures were 3.26% of its GDP, see Data: Indicators: Research and Development Expenditure (% of GDP), supra note 10, which is equivalent to approximately $140 billion. See Data: Indicators: GDP, PPP (Current International $), supra note 10 (stating that Japan’s GDP for 2010 was approximately $4.291 trillion).

Furthermore, leading American businesses are widely regarded as highly innovative. For example, in a recent survey by Booz & Company, nine of the ten most innovative companies in the world were founded and based in the United States, including Apple, Google, Facebook, and Tesla Motors.¹⁴

Using issued patents as a proxy for innovation, as Professor Hubbard does,¹⁵ further illustrates the United States’s advantage over its closest rivals. In 2012, U.S.-based inventors received nearly 2½ times the number of U.S. patents compared to Japan, the second-ranked country of origin.¹⁶ Inventors in all other countries lagged much farther behind. For example, California-based inventors received more than twice the number of U.S patents as inventors in Germany,¹⁷ Europe’s leading economy, even though Germany’s population is more than double that of California’s.¹⁸ And U.S. inventors led the world in issued European patents as well, edging out Germany on its home turf.¹⁹

Nonetheless, Professor Hubbard is quite right to be concerned about the United States’ continued position as the

¹⁵ See Hubbard, supra note 4, at 353–55, 354 n. 92 (“[P]atents are only a proxy for innovation, and not a precise measure.”).

¹⁷ See id. Of course, innovation is not geographically uniform throughout the United States; for example, Silicon Valley, the D.C. area, and parts of New England are vibrant high-tech “innovation clusters,” while other regions are relatively bereft. See Antonio Regalado, In Innovation Question, Regions Seek Critical Mass, MIT TECH. REV. (July 1, 2013), available at http://www.technologyreview.com/news/516501/in-innovation-quest-regions-seek-critical-mass.

global leader in innovation, which faces numerous challenges. Federal funding for scientific research is threatened by budget cuts.20 In addition, American students continue to trail much of the developed world in math and science test scores.21 And the Obama Administration has estimated that the United States needs “approximately 1 million more "STEM" (Science, Technology, Engineering, and Math) graduates “over the next decade if the country is to retain its historical preeminence in science and technology.”22

Second, while Professor Hubbard is skeptical that U.S. patent law can directly enhance American competitiveness, he expresses qualified optimism about its ability to help create “a culture . . . conducive to innovation."23 Existing evidence regarding patent law’s actual role in facilitating innovation appears mixed, however. For example, the 2008 Berkeley Patent Study, a comprehensive survey of over 1300 early-stage technology companies, found that “startup executives report that patents generally provide relatively weak incentives to conductive innovative activities.”24 However, the same study also reported substantial variations by industry regarding the importance of patents for innovation, and it concluded that “startup companies in all high technology sectors are patenting much more widely, and in greater numbers,” than expected.25 In contrast, a recent study by

\begin{itemize}
\item 22 \textit{President’s Council of Advisors on Sci. and Tech., Exec. Office of the President, Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering, and Mathematics}, at i (Feb. 2012), available at \url{http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_2-25-12.pdf}.
\item 23 Hubbard, \textit{supra} note 4, at 387.
\item 24 Stuart J.H. Graham, Robert P. Merges, Pam Samuelson & Ted Sichelman, \textit{High Technology Entrepreneurs and the Patent System: Results of the 2008 Berkeley Patent Survey}, 24 BERKELEY TECH. L.J. 1255, 1255 (2010); see also id. at 1285 (“[R]espondents told us that on average, patents offer just a ‘slight’ incentive to engage in invention, R&D, and commercialization”).
\item 25 \textit{Id.} at 1287.
\end{itemize}
James Bessen found that the vast majority of publicly-listed software companies did not patent at all, suggesting that patent law provides limited incentives to innovate in that industry.26 And in other industries like pharmaceuticals, biotechnology, and medical devices, it is widely accepted that patent protection provides a strong incentive to innovate.27 Thus, whether and to what degree U.S. patent law promotes American innovation remains uncertain.

Finally, other policy levers may be employed to help promote and sustain an American “innovation culture,” either as a supplement or an alternative to patent law. There is burgeoning literature that prizes can be effective alternatives to patents in promoting innovation, at least in some circumstances.28 Indeed, the Obama Administration has promoted federally-funded prizes and challenges29 and has created a website, Challenge.gov, where American inventors and entrepreneurs can compete for prizes awarded by federal agencies.30 In addition, permanent federal and state corporate tax credits for research and development could play a valuable role in further strengthening American innovation.31

27 See Graham et al., supra note 24, at 1279–80, 1283 (“[V]enture-backed biotechnology and medical device companies are . . . more likely than software and Internet firms to file patent applications”); Benjamin N. Roin, Unpatentable Drugs and the Standards of Patentability, 87 Tex. L. REV. 503, 504 (2009) (“It is widely accepted that patents play an essential role in motivating private investment in pharmaceutical R&D”).

31 See Jessica Lee & Mark Muro, Cut to Invest: Make the Research and Experimentation Tax Credit Permanent, BROOKINGS (Nov, 2012), http://www.brookings.edu/~media/research/files/papers/2012/12/06%20federalism%20research%20experimentation%20tax.pdf (“A permanent [Research and Experimentation] Tax Credit will bolster innovation–related
Furthermore, public recognition and support for math and science education can help foster the “inventing norms” described by Professor Hubbard. For instance, the “Educate to Innovate” campaign launched in 2009 has promoted science and math education through a variety of approaches, including science fairs on the White House lawn, educational programming by Discovery Communications for middle school students, and even the use of Sesame Street characters like Elmo and Big Bird to stimulate interest in math and science among young children. Overall, these approaches to promoting a more vibrant pro-innovation culture ultimately may be at least as promising as patent law.

investment and activity in U.S. metropolitan areas, foster prosperity, and improve the nation’s standing in the global economy.”); see also Daniel J. Hemel & Lisa Larrimore Ouellette, Beyond the Patents-Prizes Debate, 92 Tex. L. Rev. 303, 321–326 (2013) (explaining existing but temporary federal tax credits for R&D and creating a new taxonomy to directly compare patents, prizes, and tax incentives in innovation policy); Shaun P. Mahaffy, Note, The Case for Tax: A Comparative Approach to Innovation Policy, 123 Yale L.J. 812, 812 (2013) (arguing “that tax credits could be used to ameliorate a number of inefficiencies that arise from the failures of patent law”).