3-2015

Cameron E. Tommey
Washington and Lee University School of Law

Follow this and additional works at: https://scholarlycommons.law.wlu.edu/jece
Part of the Energy and Utilities Law Commons, Environmental Law Commons, and the Natural Resources Law Commons

Recommended Citation

This Note is brought to you for free and open access by the Journal of Energy, Climate, and the Environment at Washington & Lee University School of Law Scholarly Commons. It has been accepted for inclusion in Washington and Lee Journal of Energy, Climate, and the Environment by an authorized editor of Washington & Lee University School of Law Scholarly Commons. For more information, please contact lawref@wlu.edu.
Moving Military Energy
“Behind the Fence:”
Renewable Energy Generation on U.S.
Defense Lands

Cameron E. Tommey*

Abstract

“The [Department of Defense] uses over 30,000,000 MegaWatt Hours ("MWH") of electricity per year, at a cost of over $2 billion a year. Almost 98 percent of the electricity supplied to [Department of Defense] installations comes from the civilian market, which also makes it highly susceptible to the increasing spate of large-scale outages (caused by accidents, over-demand, as well as cyber-attack). Indeed, the Defense Science Board described the national power grid as ‘fragile and vulnerable,’ and noted that the reliance placed on it by the [Department] put ‘critical military and homeland defense missions at unacceptable risk of extended outage.’”

Fueling the Balance, Brookings
Institute

The United States Department of Defense stands as the world’s single largest consumer of energy—domestic consumption alone

* Cameron Tommey (tommey.c@law.wlu.edu) is a J.D. candidate at Washington & Lee University School of Law, May 2015, and a Senior Articles Editor for the Journal of Energy, Climate, and the Environment. Cameron would like to thank Professor Albert V. Carr for his invaluable support and guidance and to members of the Journal of Energy, Climate, and the Environment for their review and comments.

by the Department amounts to nearly one percent of the United States’ total energy consumption and nearly eighty percent of the energy consumed by the Federal Government. Although a cadre of statutes, Executive Orders, and agency priorities set high goals for the introduction of renewable energy into the Department’s portfolio, it has historically failed to meet both its target for reducing facility energy use and its target for renewables integration. This Note suggests moving the Department’s energy production “behind the fence,” fixing technology to place to increase security and reduce environmental and economic impacts. To do so, however, a mountain of challenges will have to be overcome, including federal permitting restrictions on new energy projects, high capital costs for increased generation, a number of technological challenges with emerging renewable energy sources, and the existing contracts with traditional energy producers. Ultimately, a comprehensive and expansive initiative that couples site-specific technologies with agency-wide coordination will help the Department both meet its statutorily mandated targets for energy efficiency and production and also effect positive change in the environmental impact of our nation’s single largest energy consumer.

Table of Contents

I. Introduction ... 594
 A. Background .. 596
 B. Politically Opportune ... 600
II. Federal Action on Renewable Energy 601
 A. Legislation .. 603
 B. Executive Action .. 605
III. Benefits of Renewable Energy to the Department of Defense .. 606
 A. Security ... 608
 B. Environmental .. 609
 C. Economic .. 611
IV. Department Integration of Renewable to Date 612
V. Fixing Technology to Place ... 614
 A. Case Study I: Biomass in the U.S. Northeast 616
 B. Case Study II: Solar in the U.S. Southwest 618
 C. Microgrids and Smart Grids .. 620
 D. Microgrids in the Military .. 622
VI. Challenges and Recommendations ... 623
 A. Federal Permitting Restrictions ... 624
 B. Lack of Short Term Incentives .. 625
 C. Generation vs. Acquisition .. 626
 D. Shifting Land Management .. 628
 E. Technological Challenges .. 629
 F. Existing Contracts ... 630
VII. Conclusion .. 632

I. Introduction

The Department of Defense ("DOD") currently represents the world's single largest consumer of energy, with a larger energy footprint from its daily activities than any public or private entity and more than 100 countries. Not only does this represent a significant expenditure for our nation's defense budget, but it also highlights a sweeping opportunity to alter the face of energy consumption and conservation on a mass scale in the United States. Pursuant to federal legislation, executive orders, and DOD policies and practices, the U.S. military has made steps toward developing more robust renewable energy standards for the agency as a whole and for individual military branches.

With the roll out of the President's Climate Action Plan in the summer of 2013, the military became a key piece of our nation's shift towards cleaner, greener energy while also advancing energy security in an increasingly politically unstable global environment. In highlighting the nexus between energy consumption and a changing climate, the Climate Action Plan noted that "climate change is no longer a distant threat – we are

2. See id. at 2 (describing the energy usage of the DOD in relation to the entire federal government).
3. See id. (comparing the excessive energy usage of today’s military to the energy usage issues presented in the Civil War).
4. See infra Part II and accompanying text.
5. See WARNER, supra note 1, at 2 ("The long-term implications of this energy consumption on national security as a whole are manifold, from bolstering illiberal regimes that control oil reserves and indirectly financing terrorist groups to driving climate change that endangers global stability and the American economy.").
already feeling its impacts across the country and the world.”

This Note argues that the Department of Defense installations and bases represent the key piece of the puzzle in advancing a program of renewable energy sources for electricity generation and acquisition.

In Part I, this Note reviews where the Department of Defense has focused its time and funding with regards to renewable energy to date. It then assesses where it could go with the remaining term of a President eager to integrate renewable technologies into the operations of the federal government.

Part II reviews the various legislative, executive, and agency actions that place special requirements upon the DOD to consider a transition to renewable energy sources. Part III summarizes the clear and significant benefits of renewable energy integration by the DOD, including increased mission security, positive environmental impacts, and economic incentives. After reviewing the progress of the DOD to date in Part IV, Part V considers the myriad benefits of decentralizing energy systems. Special attention will be paid to the untapped opportunity to use locally sourced and regionally appropriate renewables technologies—in conjunction with Smart Grid and other developing transmission uses—to create a large-scale renewable energy portfolio for the federal military through use of small-scale generation.

Finally, Part VI will highlight some of the major challenges to a rapid transition from traditional energy sources to renewable energy sources at Department of Defense installations and bases.

7. See infra Part II and accompanying text.

8. See infra Part II and accompanying text.

9. See infra Part II and accompanying text.

10. See infra Part III and accompanying text.

11. See infra Part V and accompanying text.

12. See infra Part V for discussion of particular renewable electricity generation technologies that take advantage of regionally abundant resources to increase efficiency and decrease transportation costs.

13. See infra Part V and accompanying text.
more renewable forms of electricity generation and acquisition.14 Given the current funding opportunities, the private sector interest in renewables investment, and developing federal permitting structures to favor renewables, the time to capture the DOD’s renewable energy opportunity is now.15

Ultimately this paper endeavors to highlight the particular opportunity for “behind the fence” electricity generation—that is, electricity generated and used within the physical boundaries of a military installation.16 As later Parts discuss, however, a number of challenges stand in the way of facilitating this significant departure from historical and current practice; the transition to a renewable energy portfolio for our military will neither be instant nor simple.17

\textbf{A. Background}

The Department of Defense’s energy footprint makes it the world’s largest single consumer of energy—more than any other public or private entity and more than one hundred individual countries.18 Looking only at domestic energy consumption—both electricity and other fuels and uses—this amounts to nearly one percent of the United States’ total energy consumption and nearly eighty percent of the energy consumed by the Federal Government.19 To put this in perspective, “the Department of Defense burns 395,000 barrels of oil per day—about as much as the entire country of Greece.”20

The same pattern of considerable energy consumption happens at the installation and base level as well. “The DoD uses over 30,000,000 MegaWatt Hours (“MWH”) of electricity per year, at an [annual] cost of over $2 billion.”21 Significantly, as recently as 2010, “[a]lmost 98 percent of the electricity supplied to [DOD]
installations comes from the civilian market,” leading to high susceptibility to large-scale outages resulting from accidents, weather events, increased demand, and new threats of cyber-attack.22 Recognizing the risks involved in procuring nearly 100 percent of its electricity needs from the civilian grid, the Defense Science Board described the national power grid as “fragile and vulnerable” and noted that “critical national infrastructure places critical military and Homeland defense missions at an unacceptably high risk of extended disruption.”23 Although much of this consumption falls within the broader categories of strategic defense, both internal and external studies of the Department of Defense’s energy use reveal that energy efficiency and a lack of comprehensive energy consumption plans are just as important as problems of electricity acquisition and generation.24 This Note endeavors to focus on the latter of these problems: the sources of energy acquisition by the U.S. military and the opportunities for the incorporation of renewable sources 25 to positively shift the strategic, environmental, and economic impacts of energy use.26

22. See id. (characterizing the military’s “exceptional appetite for energy, which is becoming untenable for our future security.”).
24. See WARNER, supra note 1, at 4 (noting that while energy self-sufficiency for bases is a worthy aim, the DOD’s approach has been ad hoc and does not address energy consumption by vehicles and operations); see also DEPARTMENT OF DEFENSE, OFFICE OF THE DEPUTY UNDER SECRETARY OF DEFENSE, INSTALLATIONS AND ENVIRONMENT, 0-3C82BA1, ANNUAL ENERGY MANAGEMENT REPORT, FISCAL YEAR 2012 (2013) [hereinafter 2012 ANNUAL ENERGY REPORT] (containing a detailed analysis of energy use by the Department of Defense in 2012 as well as a comprehensive assessment of energy initiatives across the Department).
25. See 2012 ANNUAL ENERGY REPORT, supra note 24, at 35 (stating that currently, the DOD recognizes seven main technologies for renewable electricity generation: geothermal, ground source heat pumps, biomass, solar thermal, solar photovoltaic (PV), and wind).
26. See WARNER, supra note 1, at 1 (“This is not just a matter of recognizing the energy and climate issue on the threats side of the ledger. In order to drive actual programming and yield resources, a defined and realistic
This area shares the criticism of lacking comprehensive oversight and coordination.27 Despite a strong increase in activity related to energy efficiency and consumption in the military, the overall impact remains “spotty and lacks a broad, cohesive strategy that cuts across the [DOD] as a whole. The programming tends to be ad-hoc and often focused on the lowest-hanging fruit.”28

Spending billions of dollars annually on energy acquisition, the DOD has the potential both to reduce these costs substantially through resource-neutral renewable sources29 as well as infuse huge investments into new and developing technologies.30 History has shown that military research and development can lead to breakthroughs in technology, in part because of the formidable budgets and research and development resources of the DOD.31 The challenge, however, lies in creating a targeted and sweeping program that ensures the efficacy of this target finally needs to be enunciated for the Department of Defense in the energy usage realm.”).

27 See 2012 ANNUAL ENERGY REPORT, supra note 24, at 5 (calling for “Department-wide integration of energy-informed analyses into decision-making and business processes.”); see also WARNER, supra note 1, at 6 (suggesting that the DOD designate a “point person” to research and compile an annual report for the Secretary of the DOD and Congress, reviewing progress towards annual and long-term goals and standardizing the reporting mechanisms).

28 WARNER, supra note 1, at 4 (noting that plans to push military bases to operate as “net zero,” for example, producing all energy necessary for base consumption, has to date only reached a small fraction of the total domestic installations).

29 See OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY, U.S. DEPARTMENT OF ENERGY, 2012 RENEWABLE ENERGY BOOK 120 (2013) [hereinafter RENEWABLE ENERGY BOOK] (defining renewable energy sources and qualifying resource methods). Renewable electric energy sources are naturally replenishing but flow-limited. \textit{Id}. They are virtually inexhaustible in duration but limited in the amount of energy that is available per unit of time. \textit{Id}. Renewable energy resources include biomass, hydropower, geothermal, solar, wind, and ocean energy. \textit{Id}.

30 See WARNER, supra note 1, at 6 (stating that the DOD has developed revolutionary technology in response to adversity in the past).

31 See Jeremy S. Scholtes, \textit{On Point for the Nation: Army and Renewable Energy}, 34 ENERGY L.J. 55, 61 (2013) (noting that the various military branches have “acted as a crucible for social and technological advancement many times since their very inception.”).
research and development and facilitates technology flow to agencies and parties outside of the DOD.32

Myriad external factors at play push the Department to embrace renewable technologies domestically, including “acknowledgment of evolving cyber-attack capabilities across the globe that could impact [military] operations at installations . . . [and] the need to develop operational plans and sound infrastructure that will endure through changing environmental conditions.”33

Furthermore, the structure and reach of the Department of Defense makes it perhaps the most well positioned federal agency to move for sweeping changes in energy management.34

With more than 500 permanent installations overseas and in the United States, military lands “contain more than 300,000 buildings and 2 billion square feet of space.”35 That means [the DOD’s] footprint is 4 times that of Wal-Mart and 10 times that of the General Services Administration (“GSA”).36 Together, these installations, comprising nearly 20 million acres, offer a “clear target for [the DOD] to promote energy efficiency and reduce energy costs,” often through alternative energy sources.37

\begin{itemize}
\item 32 See id. at 101 (identifying Navy and Army practices which make a unified energy initiative difficult to create).
\item 33 Id. at 61.
\item 34 See WARNER, supra note 1, at 7 (providing reasons why the DOD is in a unique position among entities to effectuate a cleaner and more environmentally friendly energy policy).
\item 36 See id. (stating that this analogy to the GSA is an important indicator of the relative size of the Department of Defense compared to the remaining entirety of the Federal Government).
\end{itemize}
DOD base or installation presents the unique opportunity to act as a lab of hyper-local technologies, using resources in regionally specific contexts. With all of these factors at the forefront of the minds of DOD leadership, steps have already been taken to coordinate among the military branches.

B. Politically Opportune

The increase in attention given to environmental and climatic issues since President Obama took office could lead to the assumption that these are inherently Democratic issues; executive actions alone have led to some of the most significant advances in government sustainability in recent years. A broader perspective of these issues, however, reveals strong bipartisan recognition of the threats—strategic, environmental, and economic—of waning fossil fuel resources and increasing global political complexity. Given this political climate in Washington and a President keen on setting a legacy of environmentalism, the Department of Defense sits poised to initiate new measures now to set into motion long-term

38. See infra Part V for a discussion of regionally specific renewable sources, including case studies.

39. See WARNER, supra note 1, at 6 (“Part of achieving success is having the metrics on hand to implement measurable standards across the [Department] and know what type of progress (or not) is being made in usage on an annual basis.”); see also 2012 ANNUAL ENERGY REPORT, supra note 24, at 9–13 (listing high level officials in each military branch along with their respective titles and subordinate governance structure with regards to energy management).

41. See WARNER, supra note 1, at 5 (“When asked to name a key issue to solve, the one commonality between GOP, swing, and Democratic primary voters in the 2008 election was to cut America’s dependency on foreign oil.”).
investment in developing energy technologies and establish renewable energy standards.\footnote{42}

Indeed, the White House Climate Action Plan released in the summer of 2013 directly highlights the incorporation of renewable energy into Department of Defense strategies and the DOD's own Annual Energy Management Report singles out renewables as one of the four core principles of a balanced, secure energy plan.\footnote{43} With new federal regulations attacking some forms of fossil fuel-based energy generation, such as forthcoming Environmental Protection Agency (“EPA”) limits on carbon emissions from coal facilities, the DOD will advantage itself by finding alternative sources to replace these fuels relative to the cost of retrofitting into compliance.\footnote{44}

\textbf{II. Federal Action on Renewable Energy}

The renewable-friendly political climate discussed above has led to a spectrum of actions—legislation, executive orders, and agency initiatives—to position the federal government as a laboratory for the development and promulgation of renewable energy technologies.\footnote{45} Many of these federal initiatives, in

\begin{itemize}
\item \footnote{42. \textit{See Climate Action Plan}, supra note 40, at 5 (recognizing the numerous steps already taken by President Obama's administration by “highlight[ing] progress already set in motion by the Obama Administration to advance these goals and set[ing] forth new steps to achieve them.”).

\item \footnote{43. \textit{See id.} at 7 (summarizing the aggressive renewable goals of the Department and the significance of these goals given the Departments position as “the single largest consumer of energy in the United States . . .”); \textit{see also 2012 Annual Energy Report}, supra note 24, at 6 (summarizing the four core principles as: reducing demand, expanding supply, enhancing security, and advancing new technologies).

\item \footnote{44. \textit{See EPA Proposes Carbon Pollution Standards for New Power Plants/ Agency takes important step to reduce carbon pollution from power plants as part of President Obama's Climate Action Plan, U.S. Environmental Protection Agency Newsroom} (Sept. 20, 2013), http://yosemite.epa.gov/opapress.nsf/0/da9640577ceacd9f85257beb006cb2b6?OpenDocument (announcing the new rulemaking with a mission to “cut carbon pollution from new power plants in order to combat climate change and improve public health”) (on file with the \textit{Washington and Lee Journal of Energy, Climate, and the Environment}; \textit{see also Climate Action Plan, supra note 40, at 5 (heralding “tough new rules to cut carbon pollution” in line with the Administration’s goals).

tandem with a collection of state initiatives, have created an environment in which public-private partnerships can thrive. For example, the Department of Energy’s Office of Renewable Energy and Efficiency (“DOE-OREE”) and the National Renewable Energy Laboratory (“NREL”) cultivate private sector appetite for renewable energy development. DOE-OREE supports deployment of new renewable technologies and encourages energy efficiency initiatives. Similarly, NREL, another division of the Department of Energy (“DOE”), acts as the government’s main laboratory for new and emerging renewable energy technologies.

These various agencies work together to develop renewable energy solutions for the federal body and beyond.
The following sections will look at specific legislative and Executive actions that have pushed for further renewable energy integration and now set goals—some mandatory, others aspirational—applicable to the Department of Defense.

A. Legislation

A collection of legislative actions has created various goals for Federal agencies in terms of sustainability and integration of renewable energy. The result is a somewhat confusing array of definitions and benchmarks.

The Energy Policy Act of 2005 ("EPACT05") directs federal agencies to consume three percent of their electrical energy from renewable sources for the years 2007 through 2009, increasing progressively to seven and one-half percent in 2013. According to EPACT05, progress towards these goals should proceed as “economically feasible and technically practicable.” Adding to this, the Energy Independence and Security Act of relationships, "increase and streamline access to national laboratory capabilities," and "demonstrate the value of lab-developed science and technology") (on file with the WASHINGTON AND LEE JOURNAL OF ENERGY, CLIMATE, AND THE ENVIRONMENT); see also NAT’L RENEWABLE ENERGY LAB., DEP’T OF ENERGY, MISSIONS AND PROGRAMS (last visited Apr. 12, 2015), http://www.nrel.gov/about/mission-programs.html (identifying NREL as “the only federal laboratory dedicated to research, development, commercialization, and deployment of renewable energy and energy efficiency technologies") (on file with the WASHINGTON AND LEE JOURNAL OF ENERGY, CLIMATE, AND THE ENVIRONMENT).

53. See id. § 15852 (establishing a number of renewable energy priorities for the entire federal government).

54. Id.
2007 ("EISA07") introduced a required reduction in fossil fuel use in new and renovated buildings by fifty-five percent in 2010, increasing to one hundred percent in 2030. An important qualifier for this requirement carried over from Executive Order 13423, which stated that at least half of the renewable energy contributing towards EISA07 goals must come from "new" sources. Both of these legislative sources of renewable energy goals emphasize a preference for on-site generation facilities, which can contribute both to production efficiency and supply security.

From 2009 through 2013, the Department of Defense fell short of its EISA07 mandated energy intensity goals. Also, the Department of Defense failed to attain its 2013 EPACT05 goal for renewable electricity consumption: the DOD consumed 5.0% of its electricity from renewable sources, short of its 7.5% target. In pursuing EISA07 targets, the DOD approached the annual goal—a 24% reduction in facility energy intensity—with a 17.2% reduction in energy consumer per gross square foot of facility space. One area of promising development—the production of electric energy from renewable sources—revealed that 11.8% of the total facilities electricity consumption in 2013 came from renewable sources.
renewable energy.62 This shows progress towards the goal of 25% in 2025.63

\textbf{B. Executive Action}

In a broad inclusion of all federal agencies, Executive Order 13423—Strengthening Federal Environmental, Energy, and Transportation Management—called for improvements in energy efficiency and set long terms goals with annual benchmarks.64 In part, the Executive Order called for agencies to:

(a) improve energy efficiency and reduce greenhouse gas emissions of the agency, through reduction of energy intensity by (i) 3 percent annually through the end of fiscal year 2015, or (ii) 30 percent by the end of fiscal year 2015, relative to the baseline of the agency’s energy use in fiscal year 2003;
(b) ensure that (i) at least half of the statutorily required renewable energy consumed by the agency in a fiscal year comes from new renewable sources, and (ii) to the extent feasible, the agency implements renewable energy generation projects on agency property for agency use.65

In the summer of 2013, President Obama released a comprehensive Climate Action Plan, outlining the
Administration’s vision for addressing climate change via the actions of the government and, in particular, federal agencies. While the overall goals of the Climate Action Plan focused on combatting climate change across sectors and markets, some of the most tangible goals set forth by the Administration came in the form of promoting American leadership in renewable energy development. In order to meet a goal of doubling renewable energy production by 2020, the Climate Action Plan proposed to issue permits for ten Gigawatts of renewable energy on public lands by 2020. This includes a commitment by the Department of Defense to deploy three Gigawatts of renewables on military installations by 2025. These goals will be analyzed more thoroughly below.

III. Benefits of Renewable Energy to the Department of Defense

The transition from traditional, fossil fuel sources of electricity generation carries numerous advantages, both in the civilian world and in the military. The recognition of these benefits has spread from a small section of the environmental

66. See CLIMATE ACTION PLAN, supra note 40, at 5 (describing a “broad-based plan to cut the carbon pollution that causes climate change and affects public health”).
67. See id. at 4–6 (“Climate change represents one of our greatest challenges of our time, but it is a challenge uniquely suited to America’s strengths... To ensure America’s continued leadership position in clean energy, President Obama has set a goal to double renewable electricity generation once again by 2020.”).
68. See id. at 7 (summarizing the progress towards previous presidential goals of renewable energy goals on public lands); see also infra Part VI and accompanying text (discussing emerging issues of public land management among federal agencies).
69. See id. (classifying the Department of Defense as the “single largest consumer of energy in the United States”).
70. See infra Part VI and accompanying text (discussing hurdles to federal renewable energy goal accomplishment).
71. See CLIMATE ACTION PLAN, supra note 40, at 5 (commenting on interests pertaining to the general public in climate change and health); see also DEPARTMENT OF DEFENSE, supra note 59, at 33 (noting the DOD’s interest in cost-efficiency as well as energy security).
community to a much wider spectrum of the country. And given the size and distribution of domestic military installations, such benefits are multiplied across the largest federal agency. Furthermore, the technology transfer from the DOD to other civilian applications stands as an additional benefit of aggressive and rapid development of renewable energy technologies in military settings.

A Memorandum of Understanding between the DOE and DOD placed strong focus on the potential benefits of a transition to renewable energy to the United States military. In doing so, the DOD may “improve energy security and operational effectiveness, reduce greenhouse gas (‘GHG’) emissions in support of U.S. climate change initiatives, and protect the [DOD] from energy price fluctuations.” These three broad benefits—

72. See Ned Resnikoff and Amanda Sakuma, The Largest Climate March in History, MSNBC (Sept. 21, 2014), http://www.msnbc.com/msnbc/largest-climate-march-history-kicks-new-york# (stating that “[m]ore and more people are seeing how climate change affects them” as stated by one interviewee); see also ENVT. PROT. AGENCY, Renewable Energy (last updated Aug. 13, 2014), http://www.epa.gov/statelocalclimate/state/topics/renewable.html (counting the benefits of renewable energy to include “[g]enerating energy that produces no greenhouse gas emissions from fossil fuels and reduces some types of air pollution[,] [d]iversifying energy supply and reducing dependence on imported fuels[,] [and] [c]reating economic development and jobs”).

74. See id. (suggesting that DOD renewable energy advances shift to “other federal agencies, setting the stage for broad market adoption”).

security, environmental, and economic—are analyzed individually below.

A. Security

A domestic transition to renewable energy sources will contribute to long-term security of U.S. military interests. Working towards shifting base and installation electricity generation to renewable sources and away from fossil fuel sources will lessen the dependence on foreign supplies of these resource extractive fuels. One report calling for a more comprehensive military energy plan points out, “[m]oving the [Department of Defense] away from reliance on petroleum will also ultimately address the long-standing irony” of sourcing our military energy needs from conflict regions.

Aside from reducing the need for conflict intervention to preserve fossil fuel sources, focusing energy acquisition on local sources of fuels reduces the risk of terroristic disruptions of energy to domestic military installations. The DOD acts in accordance with specific legislative requirements to reach what it calls “energy security.” Essentially, the military must work towards “having assured access to reliable supplies of energy and

77. See DOE Memorandum of Understanding, supra note 75, at 2 (defining energy security as “having assured access to reliable supplies of energy and the ability to protect and deliver sufficient energy to meet operational and Installation energy needs” and considering energy efficiency “as a force multiplier, increasing the range and endurance of forces”).

78. See Renewable Energy, supra note 73 ("[R]educing energy costs, decreasing reliance on foreign oil and increasing energy security is part of the DOD mission.").

79. See WARNER, supra note 1, at 1 (adding that a shift away from foreign oil will “give our military forces greater freedom of maneuver and reduced lines of communication across the entire spectrum of warfare from Expeditionary Operations to Disaster Relief and Humanitarian Operations.”).

80. See id. at 6 (suggesting a commission should be tasked with looking at each step in the process of energy development, acquisition, and generation “to determine energy security implications of issues such as import dependency, rare metals mining, and bio-based materials”).

81. See 10 U.S.C. § 2924 ("In selecting facility energy projects that will use renewable energy sources, pursuit of energy security means the installation will give favorable consideration to projects that provide power directly to a military facility or into the installation electrical distribution network.").
the ability to protect and deliver sufficient energy to meet mission essential requirements.”82 As the department mandate states, the driving force behind energy security is found in “mission essential” considerations.83 As described by the Office of the Deputy Under Secretary of Defense for Installations and Environment, this goal of energy security manifests as three key objectives.84

First, the development of more energy-efficient facilities, investment in economical energy sources—including alternative energy—and considerations across the DOD of energy use and conservation support the energy security of the Department of Defense’s mission and assets.85 Second, the Department recognizes that this mandate requires promotion of energy security of non-military infrastructure, “to monitor energy-related dependencies and promote the restoration and resilience” of other public and private sector equities.86 Finally, technological innovation must drive the Department to achieve the security of future defense forces and missions.87

B. Environmental

Some critics may conclude that a transition to renewable energy represents the narrow goals of environmental groups. But the looming potential realities of climate change and finite resources have caught the attention of organizations and agencies seemingly removed from the environmental dialogue. The military itself has acknowledged climate change as a real and

82. See id. (stating that “facility energy projects . . . should be prioritized to provide power for assets critical to mission essential requirements on the installation in the event of a disruption in the commercial grid”).
83. See id. (defining energy security relative success in mission essential requirements).
84. See 2012 ANNUAL ENERGY REPORT, supra note 24 (emphasizing that these key objectives span “across the Department”).
85. See id. (adding a recommendation that energy-informed analyses become integrated into all levels of decision making and business processes within the Department).
86. See id. (listing such entities as other federal departments and agencies, state and local governments, and private sector partners).
87. See id. at 5–6 (noting the need for support from both various Department subdivisions—Science, Technology, Engineering, and Environmental—as well as resources and expertise across the Government and the private sector).
pressing threat both to our society as a whole and to the ongoing operations of the military specifically. A military advisory board recently stated that the “nature and pace of climate change being observed today and the consequences projected by the consensus scientific opinion are grave and pose equally grave implications for our national security.” The Department of Defense’s own Quadrennial Defense Review noted:

Assessments conducted by the intelligence community indicate that climate change could have significant geopolitical impacts around the world, contributing to poverty, environmental degradation, and the further weakening of fragile governments. While climate change alone does not cause conflict, it may act as an accelerant of instability or conflict, placing a burden to respond on civilian institutions and militaries around the world.

Therefore, any effort by the DOD and its component branches will “help to reduce greenhouse gas emissions and protect our natural resources in order to slow, stabilize, or reverse climate change.”

91. See On Point for the Nation, supra note 31, at 59 (positing that the breadth and depth of the military’s national presence can begin to effect change across industries, leading to more investment in renewable technologies); see also Stan Alcorn, Why The Military Is Pushing to Green the Government, Fast Company (Oct. 10, 2013, 11:26 AM), available at http://www.fastcoexist.com/3019332/heres-an-idea/why-the-military-is-pushing-to-green-the-government (explaining how the Department of Defense must “be onboard” in order to meet the President’s goal of having 20% of the Federal
As the Climate Action plan pointed out, the military has an important role to play in our nation’s progress in reducing greenhouse gas emissions associated with traditional fossil fuel use. However, given the varied and broad benefits which renewables can offer the DOD, a comprehensive and strategic plan must guide agency-wide actions and efforts.

C. Economic

Across the board, federal agency budgets have steadily declined while energy costs of all forms continue to fluctuate. At the same time, the costs associated with various renewable energy technologies decrease as innovation and development drive market competition.

For example, “the average price of a completed [solar photovoltaic] system has declined by more than 40%” in the last three years. Similar trends have occurred in other renewable energy generation fields. The ability of the DOD to sign long-term contracts for these developing technologies allows it to hedge against volatile energy costs. The economic Government’s energy come from renewable sources by 2020 (on file with the WASHINGTON AND LEE JOURNAL OF ENERGY, CLIMATE, AND THE ENVIRONMENT).

92. See CLIMATE ACTION PLAN, supra note 40 and accompanying text.

93. See RENEWABLE ENERGY BOOK, supra note 29, at 4 (noting that “in the United States, renewable electricity has been capturing a growing percentage of new capacity additions during the past few years”). In 2012, renewable electricity accounted for more than 56% of all new electrical capacity installations in the United States—a large change from 2004 when all renewable electricity captured only 2% of new capacity additions. Id.

95. See Silvio Marcacci, Analysis: 50% Reduction in Cost of Renewable Energy Since 2008, CLEANTECHICA (Sept. 11, 2013), available at http://cleantechnica.com/2013/09/11/analysis-50-reduction-in-cost-of-renewable-energy-since-2008/ (reviewing reports of lower capital costs for renewable energy technologies across all types between 2008 and 2012). The report found that some sources, such as wind and solar, are “now cost-competitive with many fossil fuel generation sources at an unsubsidized [levelized cost of energy], even before factoring in externalities like pollution or transmission costs.” Id.

96. See ENLISTING THE SUN, supra note 94, at 9 (“the military signs a contract to purchase the energy produced by the solar installation at a price that is below local utility rates, which can save the DOD and taxpayers millions of dollars over the life of the system”).
considerations will be analyzed more fully in Part VI which considers some challenges of a transition away from traditional energy suppliers in an effort to boost renewable energy consumption.

IV. Department Integration of Renewable to Date

The military services have demonstrated a willingness to be early adopters of new technologies and enablers of renewable and alternative energy projects. [T]hey work towards net zero installations, adopt advanced metering technologies, investigate microgrid technologies, and partner with the private sector to develop wind, solar, geothermal and waste-to-energy systems, just to name a few.97

Despite this clear Congressional statement of confidence in the DOD’s ability to achieve rapid integration of renewable energy technologies, the on-the-ground reality reveal this process easier said than done. A patchwork of legislative mandates, executive orders, and internal agency initiatives has created a somewhat opaque goal for the Department of Defense.98 The legislative sources described above, in fact, create conflicting long-term goals in terms of the adoption of renewable energy sources, including different definitions of qualifying electricity sources.99

While EPACT05 and EISA07 apply broadly across the federal government, specific language in Title 10 of the U.S. Code

98. See Part II, infra and accompanying text.
99. Compare EPACT05, supra note 52, at § 203 (defining qualifying sources as “electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal, municipal solid waste, or new hydroelectric generation capacity achieved from increased efficiency or additions of new capacity at an existing hydroelectric project”), with EISA07, supra note 55, at § 803(a)(4) (defining the term “renewable energy project” as one generation commercial electricity from: solar, wind, geothermal, ocean, biomass (as defined by EPACT05), landfill gas, or Alaska small hydroelectric power”).
The renewable energy goal found there measures the total renewable energy (electric and non-electric) production and procurement as a percentage of the total facility electricity consumption. From this, the Code sets a goal of fifteen percent renewables by 2018, increasing to twenty-five percent by 2025. Additionally, selected service branches have established independent goals of installing one gigawatt of renewable energy on or near their installations. The DOD’s most recent Annual Report on energy management outlines the progress made towards these goals. Looking broadly, in fiscal year 2013 the DOD failed to meet both its target for reducing facility energy use and its target for renewable energy consumption. Additionally, in its goal of attaining twenty-five percent renewable source generation by 2025, the DOD reached 11.8% in 2013. This data can be somewhat misleading, however, because of large variances between individual DOD branches. For example, the Marine Corps and Air Force have exceeded the EPACT05 goals of renewable energy consumption (11.7% and 8% respectively) while the Army and Navy have fallen short (1.1% and 1.7% respectively). Conversely, the Navy has led the field in

100. See 10 U.S.C. § 2911(e) (mentioning specific energy production targets and establishing interim goals for FY 2018).
103. See 2012 ANNUAL ENERGY REPORT, supra note 24, at 31 (including various target years for branch-specific attainment).
104. See DEPT OF DEF., OFFICE OF THE DEPUTY UNDER SECY OF DEF., INSTALLATIONS AND ENVIRONMENT, 0-3C82BA1, ANNUAL ENERGY MANAGEMENT REPORT, FISCAL YEAR 2013 (June 2014) (containing a detailed analysis of energy use by the Department of Defense in 2013 as well as a comprehensive assessment of energy initiatives across the Department).
105. See id. at 7, D-1 (noting a 17.2% reduction in facility energy use towards a goal of 24%, and total renewable consumption of 5% out of the goal of 7.5%).
106. See id. (reporting Department of Defense energy produced from renewable sources in fiscal year 2013).
107. See id. (showing the performance gap between branches).
renewable energy production, producing a total of 26.6% of total facility electricity consumed from renewable sources.108 As later sections of this Note will look at the specific fuels used in various renewable energy applications, it is worth noting the dominant fuel types used to date by the DOD.109 Although solar (photovoltaic and thermal) comprise the largest portion of installation renewable energy projects by number of projects, the largest contributor to overall energy generation comes from geothermal projects.110 One project—the Navy’s China Lake geothermal power plant in California—supplies nearly half of all of the DOD’s renewable energy production.111 Large generation sites such as this may skew the overall spread of renewable energy generation within the DOD. But these projects also make the most significant advances to reaching statutory and agency benchmarks.112

\textbf{V. Fixing Technology to Place}

As noted above, both legislative mandates and agency policies favor on-site generation versus mere acquisition from outside renewable generators.113 This method encourages both the utilization of local resources and the technologies that have

\begin{itemize}
 \item 108 \textit{See id.} (listing the total renewable energy produced or procured as a percentage of total facility energy for the Department of Defense). It is important to note that almost all of the Navy’s qualifying renewable electricity comes from the large China Lake geothermal project, discussed below. \textit{Id.} at 37.
 \item 109 \textit{See infra Part V and accompanying text.}
 \item 110 \textit{See 2012 ANNUAL ENERGY REPORT, supra note 24, at 35 (providing, in Figure 4-3, a graphical breakdown of renewable energy supply mix by technology type).}
 \item 111 \textit{See id.} (listing the top eleven sources of renewable energy generation, totaling nine major projects generating greater than 100 BBtu and approximately four-hundred and fifty smaller projects generating less than 100 BBtu electricity).
 \item 112 \textit{See id.} at 37 (highlighting a 6.2\% decrease in electricity generation capacity in FY2012). “Although there have been numerous improvements resulting in more efficient use of the geothermal resource at China Lake over the past 25 years, a decline in power production is typical for a liquid-dominated geothermal resource with long-term continuous liquid production.” \textit{Id.}
 \item 113 \textit{See supra Part IV and accompanying text.}
\end{itemize}
been developed to capture those resources. With each year, the spectrum of renewable energy technologies broadens; new and more efficient technologies continue to come into the market, allowing for some form renewable energy to be best suited to any particular geographic area. Given the near-ubiquitous presence of U.S. military bases and installations across the country, the Department of Defense is positioned to take advantage of regionally suited renewable energy technologies to meet its electricity generation needs.

For example, a biomass energy facility located in a region dominated by forested lands already produces the secondary wood wastes necessary for biomass generation—the tree tops and bark from harvesting and mill waste from milling. Woody biomass energy production uses these products to generate electricity. Therefore, an existing market can be sustained or grown while closing the loop on one of the waste products of timber processing. Similarly, a region rich with geothermal resources will create what amounts to neutral supply chains, taking advantage of the resource in-situ.

115. See DOD’S REAL PROPERTY INVENTORY, supra note 38, at 36–78 (providing a detailed list of the nearly 20 million acres of DOD’s owned or managed lands in the United States).

118. See RENEWABLE ENERGY BOOK, supra note 29, at 4 (including a map of geothermal resources in the United States).

119. Geothermal Technologies, NATIONAL RENEWABLE ENERGY LABORATORY (last updated Aug. 28, 2014), http://www.nrel.gov/geothermal/ (summarizing the mechanics of geothermal energy) (on file with the
Fixing renewable technologies to a geographic place has produced some of the most successful projects to date. In addition to the large China Lake geothermal power plant in California, numerous other geothermal projects have tapped rich geothermal resources with the help of analyses by other federal agencies. Similarly, branch projects in the Southeast and Northeast—historically timber rich regions—make biomass one of the most viable forms of renewable energy production. By using local resources, the DOD can both ensure the security of its energy supply chains as well as approaching the goals of producing all energy “behind the fence.”

A. Case Study I: Biomass in the U.S. Northeast

Numerous federal agencies are working on increasing the foundational knowledge of renewable energy resources and potential in the United States. The DOE’s National Renewable Energy Laboratory (“NREL”) has completed extensive mapping projects to identify regions where certain renewable energy technologies would be best suited. To ground-truth these

120. See supra Part IV and accompanying text.
121. See RENEWABLE ENERGY BOOK, supra note 29, at 4 (including a map of geothermal resources in the United States).
122. See 2012 ANNUAL ENERGY REPORT, supra note 24, at 35 (highlighting biomass projects in Georgia and Kentucky as two of the top ten renewable energy-producing sites nationally).
124. See generally United States Department of Energy, Research, NATIONAL RENEWABLE ENERGY LABORATORY (last visited Apr. 12, 2015), http://www.nrel.gov/research/ (providing detailed information about a variety of
surveys to determine viability, the NREL completed a set of case studies to analyze the potential of various technologies at specific sites.125

One such study involved the EPA’s RE-Powering America’s Land initiative—a program to use contaminated sites for renewable energy generation.126 The study focused on a timber rich region of Vermont where timber markets used to drive the local industry.127 The closure of local mills and other manufacturing facilities left the area with an abundance of wood biomass resources.128 Similar wood-based energy generation—both for electricity and for combined heat and electricity—would utilize local resources in heavily forested areas of the Eastern United States, ranging from Florida to Maine.129

The NREL study highlighted the potential of biomass technologies, particularly biomass-fired combined heating and electricity generation, as a viable and promising option for the former timber mill community.130 Issues highlighted included “biomass availability and cost, equipment sizing and cost, and operation and maintenance costs.”131 Similar site-specific studies would need to be completed at any potential installation where biomass presented a viable option for renewable transition. In addition, in moving “behind the fence,” these and other sourcing energy technologies, including mapping and research studies, which focuses on clean energy).

125 See id. (describing in detail each individual project under consideration).

126 See RE-Powering America’s Land, U.S. ENVIRONMENTAL PROTECTION AGENCY (last visited Feb. 15, 2015), http://www.epa.gov/oswercpa/ (describing a process by which the EPA “identifies the renewable energy potential of...sites and provides other useful resources for communities, developers, industry, state and local governments or anyone interested in reusing these sites for renewable energy development.”).

127 See NATIONAL RENEWABLE ENERGY LABORATORY, PUTNEY BASKETVILLE SITE BIOMASS CHP ANALYSIS, iv (Oct. 2013) [hereinafter NREL BIOMASS STUDY] (explaining the characteristics of the Putney site for biomass projects).

128 See id. at 4 (detailing the history and ownership of the Basketville site).

129 See NREL Biomass Maps, supra note 120 (providing GIS data for county-level biomass resource capabilities).

130 See NREL BIOMASS STUDY, supra note 132, at iv (summarizing the recommendations for the Basketville project).

131 Id. at v.
and cost challenges would likely become more complex, threatening the sustained viability of small-scale electricity generation projects.132

\textbf{B. Case Study II: Solar in the U.S. Southwest}

Another NREL study looked at the feasibility of solar photovoltaic cells at the Ft. Hood Military Base in Texas.133 The purpose of the study was to “assess the site for possible [solar energy] installations and estimate the cost, performance, and site impacts” of different solar options.134 In doing so, Ft. Hood sought to increase “behind the fence” generation using a locally available resource—ample land to introduce solar arrays.135

Factors for determining an appropriate site for a solar project on the base included: available area for the solar array, solar resource analysis, distance to transmission lines, and distance to major roads.136 Aside from these technical requirements, any renewable energy project generating on an active military installation requires consideration of the base’s operating status, ground conditions, and restrictions associated with future development of the base.137

The study noted that Ft. Hood is slated for future expansion.138 Therefore, the feasibility study accounted for “construction projects on and around the base as buildings are

\textbf{Footnotes:}

\footnotesize{132 See \textit{infra} Part VI and accompanying text (reviewing a number of technical, legal, and practical challenges to similar “behind the fence” electricity production).}

\footnotesize{134 \textit{Id.} at iv.}

\footnotesize{135 \textit{Id.} at iv (describing Foot Hood as the largest active-duty armored post in the United States at 159,000 acres).}

\footnotesize{136 \textit{Id.} at 9 (pointing out that these and other factors are similar for rooftop mounted solar systems as well as those freestanding on the ground).}

\footnotesize{137 \textit{Id.} at iv (adding further to the need to consider applicable local building code requirements with respect to snow, wind, and seismic zones).}

\footnotesize{138 \textit{Id.} at 20 (estimating future energy cost and the amount of energy available to be used on site or sold to local companies).}
upgraded regularly”139 and “existing build-out plans”140 to expand operations. Even taking these future variables into consideration, the nature of military strategy and planning—potentially expanding or reducing operations over the course of short time periods—rapid integration of “behind the fence” electricity generation will be further challenged by the rapid change inherent in military operations.141

The study identified approximately fifty acres on the Ft. Hood base for carport roof-mounted solar systems, a method of applying the solar technology to best fit with the operations and restrictions of the military installation.142 Even considering the economic incentives available at the time of the study,143 however, the low retail rate of electricity in the region led NREL to conclude that solar renewable energy projects “would not be recommended for the site at the current utility price.”144 Looking beyond pure economics, the base would need to consider other factors such as grid independence and supply guarantees, potentially making a solar project more beneficial in the long term.145 Beyond solar, the Ft. Hood site has potential renewable energy prospects in the form of biomass power and biomass-based fuels and on- or off-site wind turbines.146

139. See NREL SOLAR STUDY, supra note 133, at iv.
140. Id.
141. See U.S Army War College, Energy Security in the 2010s and Implications for the U.S. Military, STRATEGIC STUDIES INSTITUTE, 27 (2014) (analyzing the steps involved in satisfying the U.S. Military’s energy needs in the 2010s).
142. See NREL SOLAR STUDY, supra note 133, at iv (noting that much of the installation’s acreage was excluded from the study due to the need for open space for field operations).
143. See id. at v (including the Solar and Wind Energy Business Franchise Tax Exemption; the Renewable Energy Property Tax Exemption; an incentive program through the local energy company; and the Federal Investment Tax Credit).
144. See id. at v (showing a table that diagrams the various incentives evaluated when making this determination).
145. See id. at iv (analyzing the number of average American households that could be powered off such a system and corresponding estimated job creation).
146. See id. at 2 (summarizing the compelling reasons for a diverse energy plan to reduce dependence on outside fuel sources and to increase supply security).
C. Microgrids and Smart Grids

The increasing use of smart grid and microgrid technologies, combined with a shift from centralized energy generation to decentralized, small scale facilities better fits the structure and geographic distribution of Department of Defense installations.\(^\text{147}\) A smart grid involves “an automated electric power system that monitors and controls grid activities, ensuring two-way flow of electricity and information between private power plants and consumers—and all points in between.”\(^\text{148}\) Proponents of smart grid technology note that it represents a technical improvement over traditional grid systems by using information technology to improve the movement of electricity from producers to consumers, allowing consumers to interact with the grid, and integrating new and improved technologies into the operation of the grid.\(^\text{149}\)

Ultimately, smart grid technology can increase the efficient distribution of electricity based on real-time demand and react to power outages and other energy disturbances.\(^\text{150}\) In the renewable energy context, the benefits are equally large: “[a] smart grid will allow for better integration of renewable energy

\(^{148}\) See FADRS, What is Smart Grid?, FADRS CORP. (last visited Apr. 12, 2015), http://fadrs.com/what-is-smart-grid.html (explaining how a smart grid works and the benefits these grids provide in our evolving energy sector) (on file with the WASHINGTON AND LEE JOURNAL OF ENERGY CLIMATE AND THE ENVIRONMENT).

\(^{149}\) See RED MOUNTAIN INSIGHTS, MILITARY MICROGRIDS: MARKET POTENTIAL, CASE STUDIES, PROVIDER PROFILES 7 (2013) [hereinafter MILITARY MICROGRIDS] (outlining the various technical requirements to fit the smart grid nomenclature, including ability to self-heal from power disturbance events, active customer feedback in demand response, and resiliency against physical and cyber-attacks).

\(^{150}\) See id. (suggesting that a smart grid increases the efficiency of intermittent renewable technologies by controlling demand of traditional power sources during periods of high winds or strong solar activity).
sources” because of “smarter control over these intermittent power sources,” leading to economic and environmental benefits.

Microgrids operate much the same as smart grids on a smaller scale. Like the smart grids described above, microgrids improve energy efficiency and accelerate the integration of renewable energy through the following mechanisms: facilitating demand management during normal operating hours; “islanding” the microgrid from the main grid if and when an upstream fault is detected; allowing for priority of loads during emergencies; and coordinating energy distribution to optimize the various energy streams. During normal operations, a microgrid “increases energy efficiency by relying more heavily on non-continuous sources of power when they are available, such as wind and solar, and decreasing the use of generator or power from the civilian grid.”

For the Department of Defense, these characteristics of microgrid technology all contribute to the long term renewable energy goals in a number of ways. First, the demand management and feedback will help the DOD increase its overall energy efficiency, addressing the goals of reducing overall electricity use. Second, use of microgrids will work towards a more independent and secure energy supply, contributing to the security and defense goals of the military’s energy plans. Finally, because of a microgrids ability to integrate renewable energy sources by handling non-continuous sources of power when they are available, such as wind and solar, a microgrid will

151. See id. (adding that smart grid technology can contribute to energy storage capacities, important for new electric and hybrid vehicles).

153. See MILITARY MICROGRIDS, supra note 149, at 7 (describing the process by which microgrids adapt and respond to energy disturbances).

154. Id. at 8.

155. See 2012 ANNUAL ENERGY REPORT, supra note 24, at B-1–B-5 (listing the statutory and agency defined goals of energy reductions).

156. See id. at 57 (noting that smart grid technology offers “a more robust and cost effective approach to ensuring installation energy security than the traditional approach of backup generators tied to single critical loads.”).
facilitate the DOD's renewable energy goals into the future.157 This last benefit may stand as the key factor in the transition to renewable energy, allowing for transient electricity supplies to become more normalized and reliable for operational needs.

\textit{D. Microgrids in the Military}

Recognition of the benefits of microgrids and other means of decentralizing energy generation goes beyond federal entities focused on renewable energy. The Federal Energy Regulatory Commission ("FERC") acknowledges the myriad benefits of distributed generation.158 Similarly, a DOE study conducted pursuant to EPACT05 highlighted the benefits of distributed energy, which included: increased electric system reliability, reduction of peak power requirements, provision of ancillary services such as reactive power, improvements in power quality, reductions in land use effects and rights-of-way acquisition costs associated with centralized power, and a reduction in vulnerability to terrorism and improvements in infrastructure resilience.159

The DOE report concluded that distributed generation "will continue to be an effective energy solution under certain conditions and for certain types of customers, particularly those with needs for emergency power, uninterruptible power, and combined heat and power."160 In particular, the study highlighted the potential for distributed power systems to reap the benefits of localized renewable energy generation, such as biomass, because of their ability to maintain an energy supply to local consumers.

\begin{footnotesize}
\begin{enumerate}
\item[157.] See MILITARY MICROGRIDS, supra note 149, at 7 (pointing out that more efficient integration of intermittent renewable power sources through smart grid technology will reduce the use of traditional sources, therefore cutting greenhouse gas emission and lowering costs).
\item[158.] See FERC Regulatory Change Could Boost Distributed Solar in the U.S., CLEAN TECHNICA (Jan. 18, 2013), http://cleantechnica.com/2013/01/18/ferc-regulatory-change-could-boost-distributed-solar-in-the-us/ (highlighting aspects of the FERC guidelines intended to "streamline the grid interconnection process for mid-sized solar projects that meet certain technical standards... with the potential to] double the amount of solar qualifying for "fast track" interconnection in the US.").
\item[159.] See DOE DISTRIBUTED GENERATION STUDY, supra note 114, at i (summarizing the focus areas of the study).
\item[160.] Id. at iv.
\end{enumerate}
\end{footnotesize}
even in the face of a regional blackout. An ability to operate despite regional disturbances or other large-scale issues with a centralized grid represents a huge advantage to military installations because of the benefits of autonomy and security.

Showing the impact of this study, recent regulatory reforms by FERC, the federal agency responsible for regulating the interstate commerce of electricity and other fuels, show further support for distributed forms of renewable energy. These reforms were intended to streamline the grid interconnection process for mid-size solar projects that meet certain technical standards. These and other reforms could double the amount of solar qualifying for “fast track” interconnection, allowing for expedited projects favoring renewable energy.

A combination of on-site, “behind the fence” electricity generation and new and evolving microgrid technologies to facilitate distributed energy make strides towards weaning the DOD off of traditional fossil fuels while also bolstering the three broad benefits highlighted above. This transition, however, will not come without challenges and legal, logistical, and practical hurdles. The diversity of installation characteristics and grand size of the DOD itself combine to challenge the realities of potential transition programs. Recognizing these challenges, the last Part of this paper breaks down some of the major hurdles to rapid integration of renewable energy in the form of “behind the fence” electricity generation.

VI. Challenges and Recommendations

161. See id. at iii (adding that this increased reliability in the face of interruption will affect many sectors of the federal government, including telecommunications, chemicals management, agriculture and food, and government other facilities).

162. See id. (noting a cadre of benefits addressing the National Infrastructure Protection Plan (NIPP) issued by the Department of Homeland Security).

163. See CLEAN TECHNICA, supra note 158 and accompanying text.

164. See id. (stating that reforms would update orders from 2005, which first established procedures for interconnectivity).

165. See id. (indicating the importance of issuing new orders by explaining that the earlier FERC orders created barriers to bringing new projects online).
While renewable energy may present numerous benefits the Department of Defense—strategic, environmental, and economic—and facilitate successful fulfillment of statutory mandates across federal agencies, various hurdles remain in the way of immediate change. These challenges—including a cumbersome process of federal contracting and securing financing for large projects, a lack of incentive to address long term goals on an annual basis, the necessity to maintain back-up electricity supplies (either behind the fence or localized), and the barrier to new renewable acquisition given existing electricity contracts—detracts from the viability of integrating renewable energy into the greater DOD energy portfolio. While variable other challenges remain outstanding, the following sections represents a non-exhaustive analysis of some of the major legal hurdles to rapid and fluid renewable energy integration.

A. Federal Permitting Restrictions

Despite the announcement in the Climate Action Plan of an expedited permitting process for new renewable energy project on federal lands, a lingering reality of any large-scale federal project is the cumbersome process of contracting with private parties.\(^\text{166}\) Guidelines known as the Federal Acquisition Regulation (“FAR”) “makes the process lengthy and limits industry's ability to research and lean forward on project development.”\(^\text{167}\) Therefore, issues of timing and considerations of viability are necessarily affected by the ability of any individual military installation to study a site, develop a plan, secure financing, and commence construction.\(^\text{168}\) New Executive action addresses this problem, but the environment for public-private

\(^{166}\) See On Point for the Nation, supra note 31, at 101 (describing the “rule-laden government contracting process that starts upon the submission of the application”). The Federal Acquisition Regulation (“FAR”) standards are demanding and leave very little maneuver room for the federal agency to deviate from the pattern contracting process. Id. The selection process takes months to complete and the applying company has absolutely no indication of what the project may be or whether it will be profitable. Id. at 102.

\(^{167}\) Id. at 102.

\(^{168}\) See id. at 101 (listing the requirements companies proposing to address solar, wind, biomass or geothermal needs must demonstrate).
partnerships still demands a great deal of time.169 Once again, these factors make on-site development of renewable energy generation more favorable to off-site projects or leasing installation lands to private developers.

\textit{B. Lack of Short Term Incentives}

The current goals—and the lack of incentives to meet them on an annual basis—hold back rapid development in the renewables field for the Department of Defense. As seen in the 2013 Annual Report, the DOD as a whole fell short of its annual goals for both energy efficiency and renewable electricity consumption.170 With the exception of the Air Force, every branch individually fell short of the performance standards set forth for the year.171 Without any incentive to meet these annual standards, individual branches may fall behind on the long-term goals and fail to pursue active integration of renewable energy into their overall energy portfolios.

These shortsighted decisions will often be made on the basis of economics. A cadre of observers has made it clear, however, that a successful move towards more renewable energy in the military must focus on the diverse advantages.172 Mission security, supply reliability, and environmental considerations all contribute to the long-term advantages of a transition to renewables.173

169 See Christopher J. Aluotto, Privatizing and Combining Electricity and Energy Conservation Requirements on Military Installations, 30 PUB. CONT. L.J. 723, 725 (2001) (examining the privatization of military electric utility systems in response to “the deteriorating condition of military systems” and to streamline the timeline of development).

170 See 2012 ANNUAL ENERGY REPORT, supra note 24, at D-1 (identifying the percent decrease in energy intensity as 17.7%, falling short of the goal of 21% for 2012, and a Department-wide introduction of 3.96% total renewable energy use, falling short of the annual goal of 5%).

171 See id. at 7 (highlighting the Air Force’s energy intensity reduction of 22.3% and increase of renewable consumption as 8% of total energy consumption, both exceeding the respective 24% and 7.5% goals for the year).

172 See WARNER, supra note 1, at 1–2 (describing the two complementary objectives of renewable energy integration).

173 See id. at 7 (observing that, by setting clear and defined goals, the Department “will be signaling to industry that it is serious, allowing them to make the needed changes in their structures and research”).
C. Generation vs. Acquisition

As Department of Defense reports show, one of the largest sources of renewable energy currently used to reach agency goals has been through the purchase of renewable energy from outside producers and through obtaining renewable energy certificates from other generators.174 While this short-term approach may help achieve the interim benchmarks set forth in the EPACT05 and EISA07, acquisition of renewable energy from outside generators simply represents a shift in electricity sourcing rather than adoption of renewable energy practices.175 In fact, both legislative mandates encourage and favor on-site generation in place of such external acquisition.176 A number of existing funding mechanisms facilitate the construction and operation of on-site energy generation facilities.177 By using these funding mechanisms now, the DOD will work towards building its total on-site generation capacity and focus on site-specific renewable projects.178

In 2013, the Department of Defense had nearly seven hundred renewable energy projects that represented seventy-five percent of the total amount of renewable electricity used.179 For many of these projects, three main funding mechanisms were used: Energy Production Facility Agreements (“EPFA”), Energy

174 See 2012 ANNUAL ENERGY REPORT, supra note 24, at 35 (highlighting that the second and fourth largest “sources” of renewable energy in 2012 were through these methods of acquisition rather than through on-site generation).

175 See id. at 31 (listing goals for EPACT05 and EISA07).

176 See id. (demonstrating the increase in renewable and other forms of distributed, on-site electricity generation for cost-effective solutions).

177 See id. at 71–78 (enumerating and describing the various sources of energy funding).

178 See id. at 6 (stating fixed installations are a vital component of the military’s ability to win wars and the importance of reducing energy costs by using renewable energy sources).

179 See id. at 34 (describing the remaining 25% of renewable energy procurement as purchases of renewable energy from third parties or through renewable energy certificates (REC); see also Loni Silva, Note, The Problems with Using Renewable Energy Certificates to Meet Federal Renewable Energy Requirements, 41 PUB. CONT. L.J. 985, 988 (2012) (suggesting RECs should only be “a short-term, stop-gap way to meet the [EPACT05] requirements while agencies build the facilities needed to actually consume renewable energy”).
Enhanced Use Leases (“EULs”), and Power Purchase Agreements (“PPAs”). The first two of these mechanisms, EPFAs and EULs, heavily favor on-site construction of energy generation facilities. Power Purchase Agreements (“PPAs”) function essentially as a traditional agreement to purchase energy, only in this context from a renewable source. PPAs allow “a developer to build, own, operate, and maintain a renewable generation systems on, or near, a customer’s property” and then sell the power to that customer. This approach to electricity generation would allow the DOD to rapidly reach its goals of renewable energy integration without having to bear the financial and technological burdens that comes with bringing energy generation facilities on line.

PPAs also ensure these investments in generation facilities and distribution by private parties will “create jobs, foster a marketplace which allows for innovative technologies to

180. See 2012 ANNUAL ENERGY REPORT, supra note 24, at 34 (defining and elaborating on these three funding mechanisms, including defining the source of statutory authority); see also Kevin McAllister, BARRIER TO MILITARY INSTALLATIONS UTILIZING DISTRIBUTED GENERATION FROM RENEWABLE ENERGY RESOURCES; THIRD PARTY POWER PURCHASE AGREEMENTS (2011) [hereinafter BARRIER TO MILITARY DISTRIBUTED GENERATION] (describing Power Purchase Agreements and their role in military energy acquisition).

A third party Power Purchase Agreement (PPA) allows a developer to build, own, operate and maintain a renewable energy (RE) generation system on, or near, a customer’s property; and sell power, and possibly renewable energy credits (REC) to that customer. The developer provides a majority of the initial capital, and operation and maintenance expenses. The customer receives the benefits of local generation and possibly, depending on the contract language, the RECs associated with the renewable energy generated. *Id.* at 2.

181. See 2012 ANNUAL ENERGY REPORT, supra note 24, at 34 (defining the functions of EPFAs and EULs and indicating their location in the US Code).

182. See BARRIER TO MILITARY DISTRIBUTED GENERATION, supra note 180, at 2 (describing the relationship between the energy source developer and potential customers, including the benefits to each party).

183. *Id.* at 2.

184. See ENLISTING THE SUN, supra note 94, at 9 (explaining a PPA is an attractive financing option because of the Federal Investment Tax Credit and the ability to use on-site renewable energy generation, avoiding up-front costs).
be developed, maximize the benefit to taxpayers . . . and allow the [DOD] to maintain a mission critical focus while meeting its requirements for renewable energy sources, energy efficiency, and energy security.”185 The disadvantages of PPAs, however, lie in the reliance on external sources of electricity, exacerbating the challenges of security and reliability highlighted above.186

Significantly, although many states have legislative barriers to the use of PPAs, “effectively eliminating the ability of rate payer in the state to enter into power purchase agreements with third party developers/operations of distributed generation,” the DOD appears to have a way around these state laws through statutory mechanisms.187 Section 591 of Title 40 and Section 2922(a) of Title 10 “seem to resolve this issue by granting the Department of Defense . . . the ability to enter into contracts with energy providers regardless of state law.”188

D. Shifting Land Management

Another emerging issue challenging a transition to on-site, “behind the fence” electricity generation results from a subtle trend to withdraw Department of Defense lands to management by the Department of the Interior (“DOI”).189 This results in a net decrease in land area managed by the military and its branches.190 Various factors have contributed to the more frequent practice of transferring management of some Department of Defense land to the Department of Interior.191

185. Id. at 1.
186. See supra Part III and accompanying text (describing the benefits of renewable energy to the DOD).
187. See supra Part III and accompanying text (describing the benefits of renewable energy to the DOD).
188. See supra note 180, at 1 (suggesting the DOD’s office of General Counsel needs to clarify certain statutory provisions that could potentially resolve the issue).
189. See Memorandum of Understanding between The Department of Defense and The Department of the Interior 1 (July 20, 2012) [hereinafter DOD/DOI MOU] (proposing a partnership between the Department of the Interior and the DOD to create renewable energy sources on withdrawn lands).
190. See Ross W. Gorte et al., FEDERAL LAND OWNERSHIP: OVERVIEW AND DATA 15 (2012) (reporting a 1 million acre decrease in land area for the DOD between 2010 and 2012, while acreage of land controlled by departments of the DOI has increased).
191. See id. (stating the DOD may dispose of unwanted lands that it deems surplus to its purposes).
To address this issue, the DOI partnered with the DOD to meet the dual goals of helping “the [DOD] develop renewable energy in the interest of greater installation energy security and reduced installation energy costs and to help meet [DOI] goals of increasing renewable energy production from public lands.”192 This partnership seeks not only to “encourage a dialogue” with energy developers and the agencies, but it also attempts to “investigate existing contract and management authorities to achieve mutual renewable energy goals and identify required changes in existing authorities” to facilitate a more streamlined permitting process.193 In essence, the partnership will allow for increased interagency coordination to address the complex siting and permitting issues discussed in earlier sections.194

The Department of Defense is concurrently developing programs to increase land under its management to combat urban encroachment and to meet conservation goals.195 The overall trend, however, is less land for potential energy projects—particularly those requiring large land areas such as solar and wind—and more complex inter-agency processes for permitting and development of renewable energy projects on land held by non-defense agencies.196

\textbf{E. Technological Challenges}

Another clear challenge of “behind the fence” generation arises when military installations attempt to incorporate new or

\begin{itemize}
 \item 192 DOD/DOI MOU \textit{supra} note 189, at 2.
 \item 193 See id. at 2 (outlining a plan for the partnership between the DOD and the DOI).
 \item 194 See id. at 1 (showing the DOD and DOI’s commitment to partnership to work together to create safer, cleaner, and more secure energy supplies).
 \item 195 See Readiness and Environmental Protection Integration (REPI) Program, U.S. Department of Defense, Sustainable Ranges Initiative, http://www.denix.osd.mil/sri/repi/ (describing the land acquisition program as a partnership to “acquire easements or other interests in land from willing sellers to preserve compatible land uses and sustain wildlife habitat near installations and ranges where the military operates, tests, and trains”) (on file with the \textit{Washington and Lee Journal of Energy, Climate, and the Environment}).
 \item 196 See id. (stating that the REPI program is part of a larger initiative not only to promote military readiness but also preserve the habitat through various means).
\end{itemize}
under-tested technologies to reach renewable goals. Additional resource challenges will arise, such as the external requirements of any form of energy production. For example, “biomass programs, geothermal projects, and to a more limited extent the solar programs . . . must have sufficient supplies of water. Additionally, in order to transport and manage water, the energy-dependent water utilities infrastructure must also have sufficiently reliable electricity.”197 While these resource barriers would be present with any form of energy generation and transport, the renewables context may present additional technological hurdles for military integration of renewables versus well-known traditional forms.198 As highlighted above, this aspect of facility-specific generation may make offsite “neighbor” generation facilities a more practical manifestation to achieve renewables integration.199 Power Purchase Agreements “allow federal agencies to implement on-site renewable energy projects with no upfront capital costs.”200 This, in turn, provides a secure source of renewable electricity for a known period of time while leaving lifetime ownership, operation, and maintenance of the system to the developer.201

F. Existing Contracts

The Power Purchase Agreements (“PPA”) mentioned earlier in this Part stand as one of the largest roadblocks to the introduction of new renewable energy projects on military installations.202 The traditional energy market relies on long-term purchase agreements to meet the up-front capital investment to

197. On Point for the Nation, supra note 31, at 75–76.
198. See Project Financing Analysis, NATIONAL RENEWABLE ENERGY LABORATORY (last visited Apr. 12, 2015), http://www.nrel.gov/analysis/key_activities_finance.html?print (“Development of projects relying on newer or innovative technologies that lack extensive operational track records may be slowed because many tax equity investors are seen as highly averse to technology risk.”) (on file with the WASHINGTON AND LEE JOURNAL OF ENERGY, CLIMATE, AND THE ENVIRONMENT).
199. See id. (summarizing aspects of renewable resource project finance that may be problematic for potential investments).
200. On Point for the Nation, supra note 31, at 78.
201. See id. at 78–79 (stating the costs and benefits for agencies and developers in the contractual relationship).
202. See supra Part VI(C) and accompanying text.
bring new energy generation on-line. Without such agreements, it would be very difficult for new energy projects to ever obtain the capital to build a new facility—investors are weary to provide start-up capital without some promise of long-term profits. This is just as true for renewable energy projects as it has been for traditional energy projects.

As a result of these existing variables, even if the capacity for renewables were established on all military installations in the near future, the transition to all renewable electricity or even net-zero installations would depend heavily on the lifespan of existing contracts and the potential ability of the DOD to opt out of existing contracts. This may involve negotiations with current generators and producers. The trickle-down effect of these negotiations could be seen in the willingness of states or regions to allow increased renewable production; if large military installations cease to purchase large quantities of electricity from their local traditional energy producer, other users may realize significant rate increases.

While the opportunity for rapid renewable energy through “behind the fence” electricity generation stands large for the Department of Defense, a number of hurdles remain, including federal permitting challenges, lack of short term incentives, myriad challenges of transitioning to on-site generation from traditional acquisition agreements, and potential challenges by local providers and state governments. It will be through partnerships such as the DOD/DOI Renewable Energy Partnership Plan, however, that interagency action will both

203. See BARRIER TO MILITARY DISTRIBUTED GENERATION, supra note 180, at 2 (describing the traditional financing relationship in a PPA).

204. See id. at 1 (emphasizing the importance of leveraging third party investors and building on previous contracting schemes).

205. See id. at 2 (describing the Army’s desire to use renewable technologies yet recognizing the high costs to implement it and increased private capital required to pay for the new systems).

206. See id. at 8 (giving the example of North Carolina, where customers of existing electric utility monopoly must get permission from those suppliers to enter into PPAs with third parties).

207. See supra Part VI and accompanying text (detailing the challenges presented to the DOD in implementing new policies).
facilitate rapid integration and alleviate the issues raised above.208

VII. Conclusion

As the largest single global consumer of energy and electricity, the U.S. Department of Defense stands to contribute a great amount in the shift towards renewable energy.209 The past decade has included a wealth of action from the executive and legislative branches, as well as activity within the agency itself, to create aspirational benchmarks of renewable energy production and use.210 The realities of the challenges of financing, siting, and procuring the technologies necessary to get these projects online caused the Department of Defense to fall short of its goals in the 2012. However, progress has been made—increasing total use of renewable electricity use by the DOD to 4% and an increase in energy efficiency, decreasing use across the board by 17%.

To quicken integration of renewable sources into the DOD’s overall energy portfolio, two mechanisms should be adopted. First, energy production for use on military installations should be distributed and decentralized, increasing efficiency and gaining the benefits of energy security and reliability.211 Related to this, the DOD should also quickly assess the availability and efficiency of place-specific renewable fuel sources such as geothermal and biomass.212 Together, these two mechanisms will expedite getting new energy generation on-line and will remove the complicated issues of transmission and scale.

One of the largest challenges that stands in the way of progress is long term procurement and generation contracts already in place on many military installations.213 With the DOD

208. See DOD/DOI MOU, supra note 189 (documenting a partnership between the DOD and DOI to commit to renewable energy projects).
209. See supra Part I and accompanying text.
210. See supra Part II and accompanying text.
211. See supra Part V(C) (describing the benefits of microgrids and smartgrids and their fit into the DOD systems).
212. See supra Part V (outlining potential technologies that could promote local energy generation).
213. See supra Part VI(F) (explaining why existing contracts can delay or increase costs of renewable energy projects).
trying to reduce its use across the agency and to replace existing sources with renewable sources, many of these existing contracts will have to either be renegotiated or not renewed. 214 Additionally, the high costs of instituting new energy generation projects—even on a small scale—make adoption across the entire Department of Defense huge challenge.215

Ultimately, the benefits of transitioning to renewable energy sources are great for the Department of Defense. A comprehensive and expansive initiative that couples site-specific technologies with agency-wide coordination will help the DOD both meet its statutorily mandated targets for energy efficiency and production and also effect positive change in the environmental impact of our nation’s single largest energy consumer.

214. See id. (describing challenges existing contracts pose for changing technology).

215. See id. (explaining the investment trends in energy projects and why renewable energy projects have unique problems).